Traits affecting early season nitrogen uptake in nine legume species
نویسندگان
چکیده
Legume crops are known to have low soil N uptake early in their life cycle, which can weaken their ability to compete with other species, such as weeds or other crops in intercropping systems. However, there is limited knowledge on the main traits involved in soil N uptake during early growth and for a range of species. The objective of this research was to identify the main traits explaining the variability among legume species in soil N uptake and to study the effect of the soil mineral N supply on the legume strategy for the use of available N sources during early growth. Nine legume species were grown in rhizotrons with or without N supply. Root expansion, shoot and root biomass, nodule establishment, N2 fixation and mineral soil N uptake were measured. A large interspecific variability was observed for all traits affecting soil N uptake. Root lateral expansion and early biomass in relation to seed mass were the major traits influencing soil N uptake regardless of the level of soil N availability. Fenugreek, lentil, alfalfa, and common vetch could be considered weak competitors for soil N due to their low plant biomass and low lateral root expansion. Conversely, peanut, pea, chickpea and soybean had a greater soil N uptake. Faba bean was separated from other species having a higher nodule biomass, a higher N2 fixation and a lower seed reserve depletion. Faba bean was able to simultaneously fix N2 and take up soil N. This work has identified traits of seed mass, shoot and root biomass, root lateral expansion, N2 fixation and seed reserve depletion that allowing classification of legume species regarding their soil N uptake ability during early growth.
منابع مشابه
Foliar nitrogen responses to elevated atmospheric nitrogen deposition in nine temperate forest canopy species.
Despite its ecological importance, broad-scale use of foliar nitrogen as an indicator of ecosystem response to atmospheric N deposition has heretofore been obscured by its poorly understood intrinsic variability through time, space, and across species. We used a regional survey of foliar N conducted within a single growing season to observe that eight of nine major canopy tree species had incre...
متن کاملA global experimental dataset for assessing grain legume production
Grain legume crops are a significant component of the human diet and animal feed and have an important role in the environment, but the global diversity of agricultural legume species is currently underexploited. Experimental assessments of grain legume performances are required, to identify potential species with high yields. Here, we introduce a dataset including results of field experiments ...
متن کاملFoliar Nitrogen Responses to Elevated Atmospheric Nitrogen Deposition in Nine Temperate Forest Canopy Species
Despite its ecological importance, broad-scale use of foliar nitrogen as an indicator of ecosystem response to atmospheric N deposition has heretofore been obscured by its poorly understood intrinsic variability through time, space, and across species. We used a regional survey of foliar N conducted within a single growing season to observe that eight of nine major canopy tree species had incre...
متن کاملDifferences for traits associated with early N acquisition in a grain legume and early complementarity in grain legume–triticale mixtures
Early strategies of crop growth and N acquisition can be critical for determining competitive interactions between weeds and crops. Grain legumes and especially lupins are known to be poor competitors against weeds. Grain legumes are known to have low mineral soil N uptake abilities. However, inter- and intraspecific differences in N uptake ability in relation to below-ground traits have receiv...
متن کاملSustainable, low-input, warm-season, grass–legume grassland mixtures: mission (nearly) impossible?
Grazing lands in warm-temperate and subtropical North America have become less diverse. Pastures are typically grass monocultures, while rangelands are generally managed for the grass components. Overstocking, selective herbicides, fire exclusion and heavy rates of nitrogen fertilizer have contributed to near exclusion of native, warm-season legumes. The simplicity of managing grass monoculture...
متن کامل